Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 120(4): 1055-1067, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36581609

RESUMO

Increases in global meat demands cannot be sustainably met with current methods of livestock farming, which has a substantial impact on greenhouse gas emissions, land use, water consumption, and farm animal welfare. Cultivated meat is a rapidly advancing technology that produces meat products by proliferating and differentiating animal stem cells in large bioreactors, avoiding conventional live-animal farming. While many companies are working in this area, there is a lack of existing infrastructure and experience at commercial scale, resulting in many technical bottlenecks such as scale-up of cell culture and media availability and costs. In this study, we evaluate theoretical cultivated beef production facilities with the goal of envisioning an industry with multiple facilities to produce in total 100,000,000 kg of cultured beef per year or ~0.14% of the annual global beef production. Using the computer-aided process design software, SuperPro Designer®, facilities are modeled to create a comprehensive analysis to highlight improvements that can lower the cost of such a production system and allow cultivated meat products to be competitive. Three facility scenarios are presented with different sized production reactors; ~42,000 L stirred tank bioreactor (STR) with a base case cost of goods sold (COGS) of $35/kg, ~211,000 L STR with a COGS of $25/kg, and ~262,000 L airlift reactor (ALR) with a COGS of $17/kg. This study outlines how advances in scaled up bioreactors, alternative bioreactor designs, and decreased media costs are necessary for commercialization of cultured meat products.


Assuntos
Reatores Biológicos , Carne , Animais , Bovinos , Técnicas de Cultura de Células/métodos
2.
Foods ; 10(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33374916

RESUMO

Interest in animal cell-based meat (ACBM) or laboratory-grown meat has been increasing; however, the economic viability of these potential products has not been thoroughly vetted. Recent studies suggest monoclonal antibody production technology can be adapted for the industrialization of ACBM production. This study provides a scenario-based assessment of the projected cost per kilogram of ACBM produced in the United States based on cellular metabolic requirements and process/chemical engineering conventions. A sensitivity analysis of the model identified the nine most influential cost factors for ACBM production out of 67 initial parameters. The results indicate that technological performance will need to approach technical limits for ACBM to achieve profitably as a commodity. However, the model also suggests that low-volume high-value specialty products could be viable based on current technology.

3.
J Dairy Sci ; 102(1): 202-210, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30391170

RESUMO

Lactose within whey can be fermented and distilled to produce a potable distilled spirit. The aim of this study was to determine if acid and sweet whey types can be fermented and distilled using similar processes and to investigate differences in volatile aroma compounds for the 2 distillates. Fermentation and distillation of the 2 whey types progressed in a similar manner, using Kluyveromyces marxianus for the initial fermentation and a glass still fitted with a Vigreux column for the subsequent distillation. Ethanol content of the wash (fermented whey) varied considerably following each fermentation and ranged from 1.2 and 2.0% (wt/wt) with no clear trend between acid and sweet whey samples. Volatile aroma compounds were extracted using headspace solid-phase microextraction and identified via gas chromatography-mass spectrometry. Acid and sweet whey distillates contained unique volatile aromatic compounds, and significant differences in compound peak areas were observed. These differences may have an effect upon the organoleptic qualities of spirits produced from whey; therefore, whey source may be an important factor when fermenting and distilling whey.


Assuntos
Destilação/métodos , Fermentação , Odorantes/análise , Compostos Orgânicos Voláteis/análise , Soro do Leite/química , Etanol/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Kluyveromyces/metabolismo , Lactose/metabolismo , Microextração em Fase Sólida/métodos , Paladar , Proteínas do Soro do Leite/análise
4.
J Dairy Sci ; 101(4): 2963-2973, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29398017

RESUMO

Whey disposal can be both an environmental and economic challenge for artisanal creameries. Lactose in whey can be fermented to produce ethanol and subsequently distilled. The objective of this study was to use a process-based life cycle analysis to compare carbon dioxide-equivalent (CO2e) emissions and water usage associated with the artisanal or craft production of clear, unaged spirits using whey or malted barley as fermentation substrate. Differences in production were assessed based on key process differences: energy used, water used, distillation by-product disposal, and mass of CO2 produced during fermentation. For this study, whey was assumed removed from the artisanal creamery waste stream. Quantifiable differences were evaluated per 750-mL (45% alcohol by volume) functional unit and expressed as mass-equivalent CO2 emissions (kg of CO2e) and mass of water (kg) used. The CO2e emissions and water usage were quantified using published data, thermodynamic calculations, and mass-balance calculations for a hypothetical distillation system. The process-based life cycle analysis estimated that distillation of fermented whey reduced overall CO2e emissions by 8.4 kg per functional unit and required 0.44 kg less water added into the production process compared with production of a similar clear, unaged spirit using malted barley as substrate. Our preliminary analysis suggests that conversion to distilled whey spirit is a more environmentally responsible approach compared with landfill disposal of whey.


Assuntos
Queijo/análise , Destilação , Fermentação , Soro do Leite/química , Bebidas Alcoólicas/análise , Dióxido de Carbono/análise , Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...